Extending a partial nowhere-zero 4-flow
نویسنده
چکیده
In [J Combin Theory Ser B, 26 (1979), 205–216], Jaeger showed that every graph with 2 edge-disjoint spanning trees admits a nowhere-zero 4-flow. In [J Combin Theory Ser B, 56 (1992), 165–182], Jaeger et al. extended this result by showing that, if A is an abelian group with |A| = 4, then every graph with 2 edgedisjoint spanning trees is A-connected. As graphs with 2 edge-disjoint spanning trees are all collapsible, we in this note improve the latter result by showing that, if A is an abelian group with |A| = 4, then every collapsible graph is A-connected. This allows us to prove the following generalization of Jaeger’s theorem: Let G be a graph with 2 edge-disjoint spanning trees and let M be an edge cut of G with |M | ≤ 4. Then either any partial nowhere-zero 4-flow on M can be extended to a nowhere-zero 4-flow of the whole graph G, or G can be contracted to one of three configurations, including the wheel of 5 vertices, in which cases certain partial nowhere-zero 4-flows on M cannot be extended. Our results also improve a theorem of Catlin in [J Graph Theory, 13 (1989), 465–483]. c © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 277–288, 1999
منابع مشابه
Nowhere-Zero 4-Flows, Simultaneous Edge-Colorings, And Critical Partial Latin Squares
It is proved in this paper that every bipartite graphic sequence with the minimum degree δ ≥ 2 has a realization that admits a nowhere-zero 4-flow. This result implies a conjecture originally proposed by Keedwell (1993) and reproposed by Cameron (1999) about simultaneous edgecolorings and critical partial Latin squares. ∗Mathematics Subject Classification (2000): 05C15, 05B15, 05C38, 05C70, 05C07.
متن کاملCubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows
We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...
متن کاملOn Group Connectivity of Graphs
Tutte conjectured that every 4-edge-connected graph admits a nowhere-zero Z3-flow and Jaeger et al. [Group connectivity of graphs–a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182] further conjectured that every 5-edge-connected graph isZ3-connected.These two conjectures are in general open and few results are known so far. Aweaker version of ...
متن کاملEvery line graph of a 4 - edge - connected graph is Z 3 - connected
In [Discrete Math. 230 (2001), 133-141], it is shown that Tutte’s 3-flow conjecture that every 4-edge-connected graph has a nowhere zero 3-flow is equivalent to that every 4-edge-connected line graph has a nowhere zero 3-flow. We prove that every line graph of a 4-edgeconnected graph is Z3-connected. In particular, every line graph of a 4-edge-connected graph has a nowhere zero 3-flow.
متن کاملNowhere zero 4-flow in regular matroids
Jensen and Toft [10] conjectured that every 2-edge-connected graph without a K5minor has a nowhere zero 4-flow. Walton and Welsh [24] proved that if a coloopless regular matroid M does not have a minor in {M(K3,3),M(K5)}, then M admits a nowhere zero 4-flow. In this note, we prove that if a coloopless regular matroid M does not have a minor in {M(K5),M(K5)}, then M admits a nowhere zero 4-flow....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 1999